Extracting Rules from Pruned Neural Networks for Breast Cancer Diagnosis
نویسنده
چکیده
A new algorithm for neural network pruning is presented. Using this algorithm, networks with small number of connections and high accuracy rates for breast cancer diagnosis are obtained. We will then describe how rules can be extracted from a pruned network by considering only a nite number of hidden unit activation values. The accuracy of the extracted rules is as high as the accuracy of the pruned network. For the breast cancer diagnosis problem, the concise rules extracted from the network achieve an accuracy rate of more than 95 % on the training data set and on the test data set.
منابع مشابه
A review of neural network detection methods for breast cancer: review article
Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...
متن کاملIdentifying diagnostic errors with induced decision trees.
OBJECTIVE The purpose of this article is to compare the diagnostic accuracy of induced decision trees with that of pruned neural networks and to improve the accuracy and interpretation of breast cancer diagnosis from readings of thin-needle aspirate by identifying cases likely to be misclassified by induced decision rules. METHOD Using an online database consisting of 699 cases of suspected b...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کاملExtracting Rules from Neural Networks by Pruning and Hidden-Unit Splitting
An algorithm for extracting rules from a standard three-layer feedforward neural network is proposed. The trained network is first pruned not only to remove redundant connections in the network but, more important, to detect the relevant inputs. The algorithm generates rules from the pruned network by considering only a small number of activation values at the hidden units. If the number of inp...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996